
An Artificial Manager for Security Policies in
Organizations

Karen García-Gamboa1 and Raúl Monroy1 and Jesús Vázquez2

1Tecnológico de Monterrey, Campus Estado de México,
Km 3.5 Carretera al Lago de Guadalupe,

Col. Margarita Maza de Juárez, Atizapán de Zaragoza,
Estado de México, Mexico, 52926

Tel: +52 55 5864 5751
{A00472043,raulm}@itesm.mx

2Banco de México
Avenida 5 de Mayo, Col. Centro, Del. Cuauhtémoc

México D.F., Mexico, 06059
jjvazquez@banxico.org.mx

Abstract. Security policies are rules or conventions aimed at protecting the re-
sources of an organization. Designing, implementing and maintaining security
policies are all difficult error prone and time consuming tasks. We report on an
e-policy manager, capable of expressing and reasoning about security policies,
using (a subset of) first-order logic and closely following the work of [1]. The
tool includes an interface that provides a graphical description of a set of poli-
cies. It also includes a link to an automated theorem prover, Otter [2], which is
used to formally verify that the policies are consistent one another.

1 Introduction

Every organization should declare, and then adopt, a collection of security policies,
for its resources to be protected. A security policy is a rule or convention that pre-
scribes how to use a resource, keeping it away from an attack. If properly defined,
these policies help ensuring the goals of security, namely: integrity, confidentiality,
and availability of information. They may also help other purposes of the organiza-
tion, including legal, regulation and contractual. Security policies should be applica-
ble and easy to understand. A security policy should be like a program specification:
it details what is to be done but not how.

Writing security policies is an error-prone task: policies are often ambiguous, they
clash one another or they are simply outdated. Writing security policies is also very
time-consuming, since it amounts to developing general plans that guarantee that the
organization site will exhibit the intended behavior, even though it is under attack.
This situation prompts the construction of a tool that can help a user designing and
developing proper security policies.

 © A. Gelbukh, R. Monroy. (Eds.)

Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 97-106

This paper reports on one such a tool, we call e-policy manager, portraying the fol-
lowing features:
1. E-policy manager eases the capture of a security policy, while guaranteeing it

conveys when someone is (not) allowed to carry out an action.
2. E-policy manager formalizes each security policy, using Halpern and Weissman

first-order logic formulation [1], and then proves they are not inconsistent using
the theorem-prover Otter [2].

E-policy manager deals only with security policies concerned with the protection
of information files.

Paper overview
The rest of this paper is organized as follows: In Section 2 we describe how to ex-

press and reason about security policies using first order logic. We also give a toy
example set of a set of inconsistent security policies and present how Otter [2] is used
to pinpoint inconsistency. In Section 3 we present a graphical user interface for easily
capturing security policies. In Section 4 we show results from a psychological valid-
ity test carried on the E-policy manager. In Sections 5 and 6 we respectively show
related work and the conclusions drawn from our research.

2 Reasoning about Security Policies Using FOL

Formal methods advocate the use of techniques strongly based in Mathematics, with
which we can formalize informally presented problems and provide rigorous argu-
ments about their properties. To express and reason about security policies, we use (a
subset of) first-order logic with equality over a vocabulary, as it has proven to be
enough for this purpose [1].1

2.1 Permitting and Denying Policies

In this paper, security policies are either permitting (respectively denying) or con-
textual. A permitting (respectively denying) security policy conveys the conditions
under which someone, the subject, is allowed (respectively forbidden) to perform an
action on some object. Accordingly, the vocabulary is assumed to contain at least
four collection of predicate relations, one denoting subjects (agents, processes, offi-
cers, etc.), other denoting objects (files, databases, applications, etc.), other denoting
actions (read, write, execute, etc.), and other denoting constraints (time, roles, etc.)

A security policy therefore states a relation between a subject (users), an object
(information files, databases, etc.) and an action (read, write, modify, etc.). The ac-
tion is limited generally by the use of some access mechanism (a security mecha-
nism). More formally, a (permitting) policy is a sentence of the form:

∀X1:T1,…, Xn:Tn. C → [¬]permitted(S, A) (1)

1 The reader is assumed to be familiar with the syntax and the semantics of First-Order Logic

(FOL).

98 García K., Monroy R., Vázquez J.

where C is a first-order formula, S and A are terms that, when valuated, return a sub-
ject and an action over some object respectively, and where [¬] indicates that ¬ may
or may not appear in the formula. If ¬ does not appear in the formula, then the secu-
rity policy is of type permitting. Throughout this paper, we shall respectively use
∀X:T. P(X) and ∃X:T. P(X) as an abbreviation of ∀X. (T(X) → P(X)), read “all T’s
are P’s” and ∃X. (T(X) ∧ P(X)), read as “some T’s are P’s”.

Notice that we need some structure in order to be able to reason about the object
upon which an action is carried out. To that purpose, we use function symbols. For
example, we use read(f) to mean “read from file f”. These are the function symbols of
most frequent use:

- read(f) to mean “read from file f”’;
- write(f) to mean “write onto file f”’;
- modify(f) to mean “modify file f”’;
- delete(f) to mean “delete file f”’; and
- create(f) to mean “create file f’’.

2.2 Contextual Policies

A contextual policy is any first-order formula which states a specific view as to
what counts as security within an organization. Four security properties may be in-
cluded as an contextual security policy: i) integrity, ii) confidentiality, iii) availability
and iv) authentication. Symbolically, these kinds of security policies do not change
and so can be included or taken out at any time. Other contextual policies include
unicity. For example, the predicate relating staff members and passwords is so that:

∀X:staff. ∃Y:passw. (passw_of(X, Y) ∧ ∀Z:passw. (passw_of(X, Z) → Y = Z))

2.3 The Environment

Called the environment [1], facts about the application domain, including properties
of relations, are also captured using first-order logic. Given that E-policy manager
was specifically designed to capture security policies of an organization, the envi-
ronment comprehends relations for specifying objects such as department names,
personnel members, etc. Employees, for instance, are all given a role and an
affiliation, etc. For example, we write:

role_of(X, Y)

affiliated2(X, Y)

to respectively mean “employee X, of type staff, has position Y, of type position” and
“employee X, of type staff, belongs to department Y, of type department”. Informa-
tion has an owner and it is classified in terms of its relevance to the organization. For
example, to respectively mean “information X, of type info, belongs to department Y,
of type department” “information X, of type info, is in class Y, of type class” in sym-
bols we write:

An Artificial Manager for Security Policies in Organizations 99

belongs2(X, Y)

of_class(X, Y)

Once completely captured, both the security policies and the environment, the con-
text is all given to an automated reasoner. We have chosen to use Otter [2], since it is
well-established both in industry and in academia. Using Otter, we verify that the
model is not logically inconsistent, as well as querying the tool for specific capabili-
ties of a user within the organization at hand.

It is well-known that first-order logic is semi-decidable. In our experiments, Otter
was able to quickly find an inconsistency in the input security policies, (deriving the
empty clause), if there was any, but usually spent a while, otherwise. Notice that, if
the input security policies are not inconsistent, then Otter may run forever. Hence,
sometimes we might not be able to find an argument supporting (respectively refut-
ing) that the policies are consistent. To get around this problem, we would have to
simultaneously apply Mace to the input security policies (see Section 5).

When asked a specific query about what a specific user can do, Otter also replied
quickly. Our experiments confirm the theoretical results of [1]—our security policies
are standard and not bipolar in their sense, and contain no inequalities in their antece-
dent—. If necessary, Otter can be manually configured so that a user (a security offi-
cer in this case) can select what methods should be applied in the search for the
empty clause. If it derives the empty clause, Otter prints out a proof, which we use to
automatically hint the user which security policies are thought to be in conflict.

Otter has been made to run in automatic mode, applying binary resolution, unary
resolution or UR-Resolution, hyper-resolution, and binary paramodulation. Otter
works searching for the empty clause, which in this case is an evidence of contradic-
tion amongst the security policies.

2.3 An Example Set of Inconsistent Security Policies

In this section, we give a toy example of a set of inconsistent security policies and
show how Otter is used to pinpoint inconsistency as well as a possible root of failure.
The example is meant to illustrate that, since she is writing a number of policies, the
security officer may not be aware of inconsistencies in a large document. Let us con-
sider that the user introduces the following security policies:

1. Members of the IT department may read the information that belongs to that de-

partment, in symbols:

∀X:staff, Y:info. (affiliated2(X, it) ∧ belongs2(Y, it) → permitted(X, read(Y))).

2. Members of the IT department cannot read the security procedures.

∀X:staff. (affiliated2(X, it) → ¬permitted(X, read(security_procedure))).

3. Security procedures are part of the IT department documents.

→ belongs2(securiy_procedures, it).

100 García K., Monroy R., Vázquez J.

Once formalized, these policies are given to Otter for a consistency check. We
conclude inconsistency, given that Otter finds the empty clause:

-- PROOF ---

1 [] x:staff | y:info

2[] -affiliated2(x,it) | -belongs2(y,it) | permitted(x,read(y)).

3 [] x:info | -affiliated2(x,it) | -permitted(x,read(security_procedures)).

4 [] x:info | -belongs2(x,it) | belongs2(security_procedures,it).

-----> EMPTY CLAUSE at 0.25 sec ----> 4 [hyper, 1, 2, 3, 4] $F. ---------------

-- end of proof --

The example set of security policies is inconsistent, because policies 1 and 2 con-
tradict one another. Policy 1 states that the staff members of IT are all allowed to read
the IT information, while policy 2 states that they cannot read security procedures,
which is IT information.

3 A Graphical User Interface

Writing, developing and maintaining security policies are all responsibilities of a
security officer, who can not be assumed to be acquainted with formal methods. For-
mal methods require both significant skill and time (and therefore money) to use. To
get around this problem, E-policy manager comes with a graphical user interface
(GUI) that makes it easy to capture security policies by means of wizards and other
graphical techniques. Also the GUI makes it easy both to correctly interpret the input
security policies and to formalize them in FOL.

Through the GUI, a security officer can capture a set of security policies at a high,
abstract level, by means of schemata. Although schemata restrict the expressiveness
of our policy language, the output security policies contain the necessary ingredients
for guaranteeing a simple but correct translation into our first-order language. More-
over, the GUI hides formal methods and knowledge representation out of the user,
who no longer needs to be acquainted with these techniques.

3.1 Capturing a Permitting Security Policy

Given that a policy specifies the conditions under which a subject is allowed (re-
spectively forbidden) to perform an action on some object, the GUI portrays a sche-
mata, based on wizards, through which the user conveys several pieces of informa-
tion. This involves the subject, e.g. users, processes, etc., the action, e.g. reading,
writing, creating, etc., the object, an information file, the restrictions under which the
action is permitted, e.g. a user role, a user affiliation, etc., and whether the action
should be denied or permitted. The subject of a security policy can be a specific indi-
vidual or a group of individuals that are related by some condition.

An Artificial Manager for Security Policies in Organizations 101

Figure 1 is a pictorial description of our security policy capturing schema. Users
are allowed to write security policies giving objects the central role in the grammati-
cal construction. Then, objects appear first, as illustrated in Figure 2.

Figure 1. Security policy components

The GUI also allows the introduction of a modifier, we call the purpose modifier.

If the purpose modifier is on, the interpretation of the security policy at hand is
changed so that it now reads “only subject is allowed (respectively forbidden) to per-
form the associated action on the object under the given conditions”.

Figure 2. Security policies components (a different structure)

Using the GUI, a user is thus able to capture a security policy through a suitable

schema. Schematically, the wizard enables the user to convey six pieces of informa-
tion: i) the subject of the policy, ii) number of purposes (use only to denote exclu-
siveness, otherwise this field is left apart), iii) the type of policy (permitting or
denying), iv) the action to be carried out, v) the object the action should be performed
on, and vi) the constraints.

As an example policy capturing, consider that, after interacting with the wizard,
the user has input the following information: subject =staff, condition on the
subject = officer, purpose modifier = on, policy type = permitting, ac-
tion = read, object = passwords (the password file), and object con-
straints = none, then the policy manager records the following formulae within
the policy database:

∀X:staff. (officer(X) → permitted(X, read(passwords)))

∀X:staff. (¬officer(X) → ¬permitted(X, read(passwords)))

As another example of security policy capturing, consider that, after interacting

with the wizard, a security officer has input the following information: subject =

Object

Action

Conditions of action
application

Subject conditions

Subject

Subject Object

Action

Conditions of action
application

Subject conditions

102 García K., Monroy R., Vázquez J.

staff, subject constraints = affiliated2(subject, it), purpose modifier = off,
policy type = permitting, object = information, object constraint = be-
longs2(object, it), action = read. Then, E-policy manager outputs:

∀X:staff, Y:info. (affiliated2(X, it) ∧ belongs2(Y, it) → permitted(X, read(Y)))

Each policy can be added or removed from the database by means of a wizard,
which pops up a table containing all existing policies. A user only has to select an
unwanted policy, by clicking on it, and then indicate policy removal or edition.

3.2 Linking the Environment with a Relational Database

The graphical user interface also drives a relational database. The user, making use
of wizards, captures all the information related to the actual environment. For the
application in mind, E-policy manager comes equipped with the following tables:
• Subject<identifier, name, department of affiliation, position>
• Object<identifier, name, department this object belongs to, class>
• Action<identifier, action description>
• Security_mechanism<identifier, access mechanism>

The relational database goal is not representing a security policy but providing the
concrete information upon which the set policies act. Pretty much the same way in
which policies are manipulated, the information hold in the database tables can be
added, deleted, etc., via E-policy manager. When capturing a security policy, the
schema (subject, action and object) can be filled with information retrieved from this
relational database.

To provide flexibility to the user, we maintain a database of action synonymous
and so a user may write (or select) “change”, “manipulate”, “alter”, etc. rather than
the default “access”. To avoid slowing down the deduction process, we normalize all
the synonymous of an action to a designated, default action name. This way, we do
not perform additional, unnecessary applications of paramodulation or rewriting.

Using the capturing schema, each security policy is translated into both a first or-
der formula and a semi-natural language expression. The formula is regarded as the
formal model of the associated security policy. It is sent to Otter, if a consistency
checking is to be performed. The expression is used for documentation purposes. It is
part of the security policies manual of the associated organization.

The design of both the interface and the security policy schemata of E-policy man-
ager were largely inspired in LaSCO [3]. LaSCO is an object oriented programming
language which expresses a security policy by means of a constraint imposed on an
object. Other policy languages were also considered, e.g. [4], but none of them pro-
vides as much a solid theoretical foundation as that of [1]. We have more to say about
related work in section 5.

4 Testing Psychological Validity

E-policy manager was used to capture a number of security policies found in
books or gathered from practitioners. Although they impose severe constraints on the

An Artificial Manager for Security Policies in Organizations 103

policy language, schemata were found to be enough to capture all these security poli-
cies. Our experiments show that inconsistency checking may take a few milliseconds,
if the security policies are contradictory, but may take a few seconds, otherwise. It is
a theoretical result that FOL is undecidable; thus, in principle, inconsistency checking
may not terminate at all.

E-policy manager was also evaluated for psychological validity. We run a test on
six security officers, who answered a survey and interacted with the tool prototype.
Our results from this experiment are encouraging. The answers provided by these
security officers point that E-policy manager has achieved its two primary design
goals, namely: i) to provide an graphical user interface that makes it easy to capture a
security policy while guaranteeing it is correct in the sense of interpretation, and ii) to
provide a means for formally verifying the security policies are consistent. Rather
than an adverse opinion, we got words urging us to include an account for policies
about other resources.

E-policy manager is available upon request by sending e-mail to the first author. It
can also be downloaded from our URL, which we do not disclose here due to paper
blind reviewing constraints. In the next section, we will review existing languages for
the specification of security policies.

5 Related Work

A policy specification language aims at formalizing the intent of a policy designer
into a form that can be read and interpreted by both people and machines [5]. It is
especially designed to specify the relations amongst system entities in terms of ac-
tions and the conditions upon which these actions are denied or performed. There
exist several policy specification languages. In what follows, we review the main
features of 4 policy specification tools and associated languages: i) Keynote, ii) SPSL
[5], iii) LaSCO [3], and the General Computer Security Policy Model [6].

Keynote and SPSL [5] are used to specify security policies about network applica-
tions. Neither Keynote nor SPL provide a visual tool for policy capturing. However,
they are both equipped with a policy compiler, which produces a user profile that the
intended application can use for denying or permitting the execution of an action.
Keynote cannot be used to specify facts about the environment. Keynote does not
scale properly, as it is difficult to foresee the state that results when enforcing a num-
ber of security policies. E-policy manager can be used to capture facts about the envi-
ronment but was never thought as a mechanism for enforcing security policies.

LaSCO [3] is based on a model where a system consists of objects and events and
works by conveying restrictions on objects. This language represents the policies by
means of directed graphs which describe a specific state of the system (domain) and
specific access constraints (requirements) and in mathematic logic. The nodes repre-
sent system objects and the edges represent system events. LaSCO [3] can be used to
express a wide variety of standard and customized security policies, including access
control and other history-based and context-dependent policies. Our work has been
inspired in this language. For example, for the graphical user interface, we have
adopted the use of graphs facilitating the security policies representation, as well as
denoting information access control. LaSCO expressions can be translated into a low-

104 García K., Monroy R., Vázquez J.

level language for security policy enforcement. However, the tool does not involve
the use of a mechanism to guarantee that the policies are consistent or that they meet
certain properties.

Krsul, Spafford and Tuglualar [6] have presented a functional approach to the
specification of security policies that allows policy stepwise refinement. The model
makes the explicit assumption that policies and the value of the system objects are
related. This model expresses policies as algorithmic and mathematical expressions.
The specification policy explicitly lists the objects and attributes that are needed to
enforce the policy. The model helps identifying the components that are relevant to
the policy and hence provides a better policy understanding.

These languages are all adequate for the specification of security policies. How-
ever, they are not this effective, since, except for [6], they do not have a formal se-
mantics, with which to reason about the security policies. Also security policy cap-
turing using no visual aid has proven to be error prone, making it necessary to verify
the written policies.

Halpern and Weissman have shown that (a subset of) first order logic is enough to
express and efficiently reason about security policies [1]. They represent a security
policy as a relation between three sorts, Actions (e.g. accessing a file), Subjects (the
agents that perform actions) and Times. This contrasts with our work, where we de-
note a policy as a relation amongst Subjects, Objects and Actions. Halpern and Weiss-
man are much more interested in using a user profile in order to enforce security poli-
cies; they argue that their security policy schema (which we have borrowed for our
work) makes it easier for a user to write proper policies. They have not paid attention
to checking policy consistency.

As we can see, our work is also based on Halpern and Weissman’s. Indeed, in [1]
it is mentioned these two researchers are working on developing a nice interface for
security policy capturing, but no report has been published yet.

6 Conclusion and Future Work

To secure the most significant resources of an organization, it is necessary to have
a set of appropriate policies. Managing security policies is not an easy task and cur-
rently it does not have computer support. The goal of our work is to provide a tool
that supports this task and gives the bases for future research. The tool, called E-
Policy manager, includes a graphical user interface that makes it easy to capture secu-
rity policies and a module that formalizes these policies to be verified by a FOL
automated theorem prover, Otter.

Our work in using FOL to formally represent and reason about security policies
leaves plenty of room for improvement.

Further work includes simultaneously using Mace [8] and Otter, so as to obtain a
conclusive result that takes into account the case of a consistent policy set (possibly
making Otter run forever). Mace is a model generator which is usually used for
searching a counterexample to an input conjecture. For our case, the counterexample
will be (a subset of) the environment satisfying the input security policies.

An Artificial Manager for Security Policies in Organizations 105

Further work also includes using a natural language processor so as to allow a user
to input security policies as he would in an informal document. This interface would
significantly increment the acceptance of E-Policy manager from potential users.

References

1. Joseph Y. Halpern and Vicky Weissman. Using first-order logic to reason about
 policies. In 16th IEEE Computer Security Foundations Workshop, Pacific Grove,
 2003. IEEE Computer Society.

2. William McCune. Otter 2.0 In Mark E. Stickel, editor, 10th Conference on Auto-
 mated Deduction, volume 449 of Lecture Notes in Computer Science, pages 663-664.
 Springer, 1990.

3. James A. Hoagland. Specifying and enforcing policies using LaSCO, the language
 for security constraints on objects. The Computing Research Repository, cs.
 CR/0003066, 2000.

4. Renato Iannella. ODRL: The open digital rights language initiative. Technical
 report.

5. Minna Kangasluoma. Policy Specification Languages. Department of Computer
 Science, Helsinki University of Technology, 1999.

6. Ivan Krsul, Eugene Spafford, and Tugkan Tuglular. A New Approach to the
 Specification of General Computer Security Policies. COAST Techical Report 97-
 13., 1998, West Lafayette, IN 47907–1398.

7. Davies E., Representation of Commonsense Knowledge, Courant Institute for
 Mathematical Sciences, 1990.

8. William McCune. Mace 2.0 Reference Manual and Guide, Mathematics and
 Computer Science Division Techical Memorandum No. 249. Springer, 2001.

106 García K., Monroy R., Vázquez J.

